The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A063411 Number of cyclic subgroups of order 8 of general affine group AGL(n,2). 0
 0, 0, 0, 5040, 6249600, 15958978560, 138492255928320, 3264016697241108480, 167083534977568918732800, 26809984170742141560784158720, 15381567503446460704398211326935040 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2). LINKS V. Jovovic, Cycle index of general affine group AGL(n,2) FORMULA a(n) = (A063391(n)-A063387(n))/4. CROSSREFS Cf. A063406-A063413, A063385-A063393, A062710. Sequence in context: A180369 A053876 A158050 * A008552 A221437 A221622 Adjacent sequences:  A063408 A063409 A063410 * A063412 A063413 A063414 KEYWORD nonn AUTHOR Vladeta Jovovic, Jul 17 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 22 21:47 EST 2022. Contains 350504 sequences. (Running on oeis4.)