%I #10 Apr 23 2023 22:46:51
%S 0,0,0,0,2666496,8063483904,23667221200896,1546057323758223360,
%T 374969260180817571741696,163457085861840749434433961984,
%U 112603564970401075916528447354044416,152237556325944043707910988547266571141120,824860715471760736216894023298196038268145893376
%N Number of cyclic subgroups of order 10 of general affine group AGL(n,2).
%C Number of cyclic subgroups of order m in general affine group AGL(n,2) is 1/phi(m)*Sum_{d|m} mu(m/d)*b(n,d), where b(n,d) is number of solutions to x^d=1 in AGL(n,2).
%H V. Jovovic, <a href="/A062766/a062766.pdf">Cycle index of general affine group AGL(n,2)</a>
%F a(n) = (A063393(n)-A063388(n)-A063385(n)+1)/4.
%Y Cf. A063406-A063413, A063385-A063393, A062710.
%K nonn
%O 1,5
%A _Vladeta Jovovic_, Jul 17 2001
%E More terms from _Sean A. Irvine_, Apr 23 2023