login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062760
a(n) is n divided by the largest power of the squarefree kernel of n (A007947) which divides it.
7
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 1, 1, 1, 2, 3, 1, 1, 8, 1, 5, 1, 2, 1, 9, 1, 4, 1, 1, 1, 2, 1, 1, 3, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 8, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 16, 1, 7, 3, 1, 1, 1, 1, 4
OFFSET
1,12
COMMENTS
a(n) divides A003557 but is not equal to it.
a(n) is least d such that the prime power exponents of n/d are all equal; see also A066636. - David James Sycamore, Jun 13 2024
LINKS
FORMULA
a(n) = n/(A007947(n)^A051904(n)).
a(n) = n/A062759(n). - Amiram Eldar, Feb 12 2023
EXAMPLE
n=1800: the squarefree kernel is 2*3*5 = 30 and 900 = 30^2 divides n, a(1800) = 2, the quotient of 1800/900.
MAPLE
f:= proc(n) local F, m, t;
F:= ifactors(n)[2];
m:= min(seq(t[2], t=F));
mul(t[1]^(t[2]-m), t=F)
end proc:
map(f, [$1..200]); # Robert Israel, Nov 03 2017
MATHEMATICA
{1}~Join~Table[n/#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 104}] (* Michael De Vlieger, Nov 02 2017 *)
a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] -= e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
PROG
(PARI)
A007947(n) = factorback(factorint(n)[, 1]); \\ Andrew Lelechenko, May 09 2014
A051904(n) = if(1==n, 0, vecmin(factor(n)[, 2])); \\ After Charles R Greathouse IV's code
A062760(n) = n/(A007947(n)^A051904(n)); \\ Antti Karttunen, Sep 23 2017
CROSSREFS
Cf. A059404 (n such that a(n)>1), A072774 (n such that a(n)=1).
Cf. A066636.
Sequence in context: A378222 A325355 A219093 * A323163 A322318 A014649
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 16 2001
STATUS
approved