The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A323163 Greatest common divisor of product (1+(p^e)) and product p^(e-1), where p ranges over prime factors of n, with e corresponding exponent; a(n) = gcd(A034448(n), A003557(n)). 4
 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 4, 1, 1, 1, 2, 1, 3, 1, 4, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 4, 1, 1, 3, 10, 1, 1, 1, 2, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,12 LINKS Antti Karttunen, Table of n, a(n) for n = 1..65537 FORMULA a(n) = gcd(A003557(n), A034448(n)). PROG (PARI) A003557(n) = { my(f=factor(n)); for(i=1, #f~, f[i, 2] = f[i, 2]-1); factorback(f); }; A034448(n) = { my(f=factorint(n)); prod(k=1, #f~, 1+(f[k, 1]^f[k, 2])); }; \\ After code in A034448 A323163(n) = gcd(A003557(n), A034448(n)); CROSSREFS Cf. A003557, A034448, A322318, A323159. Differs from A062760 for the first time at n=36, where a(36) = 2, while A062760(36) = 1. Sequence in context: A325355 A219093 A062760 * A322318 A014649 A326568 Adjacent sequences:  A323160 A323161 A323162 * A323164 A323165 A323166 KEYWORD nonn AUTHOR Antti Karttunen, Jan 09 2019 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 10:28 EDT 2021. Contains 347689 sequences. (Running on oeis4.)