login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A062759
Largest power of squarefree kernel of n (= A007947) which divides n.
6
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 6, 13, 14, 15, 16, 17, 6, 19, 10, 21, 22, 23, 6, 25, 26, 27, 14, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 10, 41, 42, 43, 22, 15, 46, 47, 6, 49, 10, 51, 26, 53, 6, 55, 14, 57, 58, 59, 30, 61, 62, 21, 64, 65, 66, 67, 34, 69, 70, 71, 36, 73
OFFSET
1,2
COMMENTS
a(n) is a first power if and only if n is not a powerful number (A001694, A052485).
LINKS
FORMULA
a(n) = A007947(n)^A051904(n).
From Amiram Eldar, Feb 12 2023: (Start)
a(n) = n/A062759(n).
Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 / 2 = 0.352221... . (End)
EXAMPLE
n = 1800: squarefree kernel is 2*3*5 = 30 and a(1800) = 900 = 30^2 divides n, exponent of 30 is the smallest prime exponent of 1800 = 2*2*2*3*3*5*5.
MATHEMATICA
{1}~Join~Table[#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 73}] (* Michael De Vlieger, Nov 02 2017 *)
a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* Amiram Eldar, Feb 12 2023 *)
PROG
(Haskell)
a062759 n = a007947 n ^ a051904 n -- Reinhard Zumkeller, Jul 15 2012
(PARI) a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[, 2])); prod(i = 1, #f~, f[i, 1]^e)); } \\ Amiram Eldar, Feb 12 2023
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 16 2001
STATUS
approved