Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #21 Feb 12 2023 03:15:56
%S 1,2,3,4,5,6,7,8,9,10,11,6,13,14,15,16,17,6,19,10,21,22,23,6,25,26,27,
%T 14,29,30,31,32,33,34,35,36,37,38,39,10,41,42,43,22,15,46,47,6,49,10,
%U 51,26,53,6,55,14,57,58,59,30,61,62,21,64,65,66,67,34,69,70,71,36,73
%N Largest power of squarefree kernel of n (= A007947) which divides n.
%C a(n) is a first power if and only if n is not a powerful number (A001694, A052485).
%H Reinhard Zumkeller, <a href="/A062759/b062759.txt">Table of n, a(n) for n = 1..10000</a>
%F a(n) = A007947(n)^A051904(n).
%F From _Amiram Eldar_, Feb 12 2023: (Start)
%F a(n) = n/A062759(n).
%F Sum_{k=1..n} a(k) ~ c * n^2, where c = A065463 / 2 = 0.352221... . (End)
%e n = 1800: squarefree kernel is 2*3*5 = 30 and a(1800) = 900 = 30^2 divides n, exponent of 30 is the smallest prime exponent of 1800 = 2*2*2*3*3*5*5.
%t {1}~Join~Table[#^IntegerExponent[n, #] &@ Last@ Select[Divisors@ n, SquareFreeQ], {n, 2, 73}] (* _Michael De Vlieger_, Nov 02 2017 *)
%t a[n_] := Module[{f = FactorInteger[n], e}, e = Min[f[[;; , 2]]]; f[[;; , 2]] = e; Times @@ Power @@@ f]; Array[a, 100] (* _Amiram Eldar_, Feb 12 2023 *)
%o (Haskell)
%o a062759 n = a007947 n ^ a051904 n -- _Reinhard Zumkeller_, Jul 15 2012
%o (PARI) a(n) = {if(n==1, 1, my(f = factor(n), e = vecmin(f[,2])); prod(i = 1, #f~, f[i,1]^e));} \\ _Amiram Eldar_, Feb 12 2023
%Y Cf. A001694, A003557, A007947, A051904, A052485, A062759, A065463.
%K nonn
%O 1,2
%A _Labos Elemer_, Jul 16 2001