

A059688


Length of Cunningham chain containing prime(n) either as initial, internal or final term.


2



5, 2, 5, 2, 2, 0, 0, 0, 5, 2, 0, 0, 3, 0, 5, 2, 2, 0, 0, 0, 0, 0, 3, 6, 0, 0, 0, 2, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 3, 2, 6, 0, 2, 0, 0, 0, 0, 0, 2, 0, 2, 2, 0, 2, 0, 2, 0, 0, 0, 2, 0, 2, 0, 0, 0, 0, 0, 0, 2, 0, 0, 6, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 0, 0, 2, 2, 0, 2, 0, 2, 4, 0, 0, 0, 0, 0, 2, 0, 0
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,1


COMMENTS

The length of a chain is measured by the total number of terms including the end points. a(n)=0 means that prime(n) is neither Sophie Germain nor a safe prime (i.e. it is in A059500).


LINKS

Table of n, a(n) for n=0..104.
C. K. Caldwell, Cunningham Chains
W. Roonguthai, Yves Gallot's Proth.exe and Cunningham Chains


EXAMPLE

For all of {2,5,11,23,47}, i.e. at positions {j}={1,3,5,9,15} a(j)=5. Similarly for indices of all terms in {89,...,5759} a(i)=6. No chains are intelligible with length = 1 because the minimal chain enclose one Sophie Germain and also one safe prime. Dominant values are 0 and 2.


CROSSREFS

Cf. A005384, A005385, A053176, A059452A059456, A007700, A005602, A023272, A023302, A023330, A059500.
Sequence in context: A008566 A111129 A168464 * A072996 A244892 A278066
Adjacent sequences: A059685 A059686 A059687 * A059689 A059690 A059691


KEYWORD

nonn


AUTHOR

Labos Elemer, Feb 06 2001


STATUS

approved



