login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058207
Three steps forward, two steps back.
9
0, 1, 2, 3, 2, 1, 2, 3, 4, 3, 2, 3, 4, 5, 4, 3, 4, 5, 6, 5, 4, 5, 6, 7, 6, 5, 6, 7, 8, 7, 6, 7, 8, 9, 8, 7, 8, 9, 10, 9, 8, 9, 10, 11, 10, 9, 10, 11, 12, 11, 10, 11, 12, 13, 12, 11, 12, 13, 14, 13, 12, 13, 14, 15, 14, 13, 14, 15, 16, 15, 14, 15, 16, 17, 16, 15, 16, 17, 18, 17, 16, 17, 18
OFFSET
0,3
FORMULA
a(n) = a(n-5) + 1.
a(n) = a(n-1) + 1 if n=1, 2 or 3 mod 5.
a(n) = a(n-1) - 1 if n=0 or 4 mod 5.
G.f.: (x*(1+x+x^2-x^3-x^4))/((x-1)^2*(1+x+x^2+x^3+x^4)). [Corrected by Georg Fischer, May 18 2019]
a(n) = n/5 + 4/5*((n mod 5) mod 4) + (6/5)*floor((n mod 5)/4). - Rolf Pleisch, Jul 26 2009
a(n) = Sum_{i=1..n} (-1)^floor((2*i-2)/5). - Wesley Ivan Hurt, Oct 28 2015
MAPLE
A058207:=n->add((-1)^floor((2*i-2)/5), i=1..n): seq(A058207(n), n=0..100); # Wesley Ivan Hurt, Oct 28 2015
MATHEMATICA
a[n_] := Quotient[n, 5] + {0, 1, 2, 3, 2}[[Mod[n, 5] + 1]]; Table[a[n], {n, 0, 82}] (* Jean-François Alcover, Dec 12 2011, after Charles R Greathouse IV *)
LinearRecurrence[{1, 0, 0, 0, 1, -1}, {0, 1, 2, 3, 2, 1}, 110] (* Harvey P. Dale, Feb 27 2013 *)
PROG
(Magma) [ n le 4 select n-1 else n eq 5 select 2 else Self(n-5)+1: n in [1..83] ]; // Klaus Brockhaus, Apr 14 2009
(Haskell)
a058207 n = a058207_list !! n
a058207_list = f [0, 1, 2, 3, 2] where f xs = xs ++ f (map (+ 1) xs)
-- Reinhard Zumkeller, Jul 28 2011
(PARI) a(n)=n\5+[0, 1, 2, 3, 2][n%5+1] \\ Charles R Greathouse IV, Jul 28 2011
CROSSREFS
Cf. A008611.
Sequence in context: A152978 A118121 A006968 * A105969 A275892 A163530
KEYWORD
easy,nonn,nice
AUTHOR
Henry Bottomley, Nov 29 2000
EXTENSIONS
Second formula corrected by Charles R Greathouse IV, Jul 28 2011
STATUS
approved