Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #36 Feb 17 2022 00:50:29
%S 0,1,2,3,2,1,2,3,4,3,2,3,4,5,4,3,4,5,6,5,4,5,6,7,6,5,6,7,8,7,6,7,8,9,
%T 8,7,8,9,10,9,8,9,10,11,10,9,10,11,12,11,10,11,12,13,12,11,12,13,14,
%U 13,12,13,14,15,14,13,14,15,16,15,14,15,16,17,16,15,16,17,18,17,16,17,18
%N Three steps forward, two steps back.
%H Reinhard Zumkeller, <a href="/A058207/b058207.txt">Table of n, a(n) for n = 0..10000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (1,0,0,0,1,-1).
%F a(n) = a(n-5) + 1.
%F a(n) = a(n-1) + 1 if n=1, 2 or 3 mod 5.
%F a(n) = a(n-1) - 1 if n=0 or 4 mod 5.
%F G.f.: (x*(1+x+x^2-x^3-x^4))/((x-1)^2*(1+x+x^2+x^3+x^4)). [Corrected by _Georg Fischer_, May 18 2019]
%F a(n) = n/5 + 4/5*((n mod 5) mod 4) + (6/5)*floor((n mod 5)/4). - _Rolf Pleisch_, Jul 26 2009
%F a(n) = Sum_{i=1..n} (-1)^floor((2*i-2)/5). - _Wesley Ivan Hurt_, Oct 28 2015
%p A058207:=n->add((-1)^floor((2*i-2)/5), i=1..n): seq(A058207(n), n=0..100); # _Wesley Ivan Hurt_, Oct 28 2015
%t a[n_] := Quotient[n, 5] + {0, 1, 2, 3, 2}[[Mod[n, 5] + 1]]; Table[a[n], {n, 0, 82}] (* _Jean-François Alcover_, Dec 12 2011, after _Charles R Greathouse IV_ *)
%t LinearRecurrence[{1,0,0,0,1,-1},{0,1,2,3,2,1},110] (* _Harvey P. Dale_, Feb 27 2013 *)
%o (Magma) [ n le 4 select n-1 else n eq 5 select 2 else Self(n-5)+1: n in [1..83] ]; // _Klaus Brockhaus_, Apr 14 2009
%o (Haskell)
%o a058207 n = a058207_list !! n
%o a058207_list = f [0,1,2,3,2] where f xs = xs ++ f (map (+ 1) xs)
%o -- _Reinhard Zumkeller_, Jul 28 2011
%o (PARI) a(n)=n\5+[0,1,2,3,2][n%5+1] \\ _Charles R Greathouse IV_, Jul 28 2011
%Y Cf. A008611.
%K easy,nonn,nice
%O 0,3
%A _Henry Bottomley_, Nov 29 2000
%E Second formula corrected by _Charles R Greathouse IV_, Jul 28 2011