login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A058204
McKay-Thompson series of class 10c for Monster.
1
1, -2, -5, 0, -5, 8, -9, -20, 0, -10, 23, -32, -60, 0, -35, 68, -76, -150, 0, -80, 154, -186, -350, 0, -185, 342, -393, -740, 0, -370, 698, -808, -1495, 0, -755, 1380, -1559, -2870, 0, -1400, 2576, -2926, -5335, 0, -2595, 4710, -5270, -9580, 0, -4580, 8304, -9304, -16790, 0, -7985, 14360, -15947
OFFSET
0,2
COMMENTS
The convolution square of this sequence is A007253 except for the constant term: T10c(q)^2 + 4 = T5a(q^2). - G. A. Edgar, Apr 03 2017
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..499 from G. A. Edgar)
D. Alexander, C. Cummins, J. McKay and C. Simons, Completely Replicable Functions, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
D. Ford, J. McKay and S. P. Norton, More on replicable functions, Commun. Algebra, Vol. 22, No. 13 (1994), 5175-5193.
EXAMPLE
T10c = 1/q - 2*q - 5*q^3 - 5*q^7 + 8*q^9 - 9*q^11 - 20*q^13 - 10*q^17 + ...
MATHEMATICA
eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 110; e25a:= eta[q]/eta[q^25];
e5B := (eta[q]/eta[q^5])^6; T5a := (1 + 5/e25a)*(1 + e5B) + 5*(e25a - 5/e25a)*(e5B/(e25a)^3); a:= CoefficientList[Series[((q (T5a - 4) + O[q]^nmax // Normal /. {q -> q^2}) + O[q]^nmax)^(1/2) // Normal, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* G. C. Greubel, Jun 18 2018 *)
CROSSREFS
KEYWORD
sign
AUTHOR
N. J. A. Sloane, Nov 27 2000
STATUS
approved