Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #26 Jun 19 2018 12:31:30
%S 1,-2,-5,0,-5,8,-9,-20,0,-10,23,-32,-60,0,-35,68,-76,-150,0,-80,154,
%T -186,-350,0,-185,342,-393,-740,0,-370,698,-808,-1495,0,-755,1380,
%U -1559,-2870,0,-1400,2576,-2926,-5335,0,-2595,4710,-5270,-9580,0,-4580,8304,-9304,-16790,0,-7985,14360,-15947
%N McKay-Thompson series of class 10c for Monster.
%C The convolution square of this sequence is A007253 except for the constant term: T10c(q)^2 + 4 = T5a(q^2). - _G. A. Edgar_, Apr 03 2017
%H G. C. Greubel, <a href="/A058204/b058204.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..499 from G. A. Edgar)
%H D. Alexander, C. Cummins, J. McKay and C. Simons, <a href="http://oeis.org/A007242/a007242_1.pdf">Completely Replicable Functions</a>, LMS Lecture Notes, 165, ed. Liebeck and Saxl (1992), 87-98, annotated and scanned copy.
%H D. Ford, J. McKay and S. P. Norton, <a href="https://doi.org/10.1080/00927879408825127">More on replicable functions</a>, Commun. Algebra, Vol. 22, No. 13 (1994), 5175-5193.
%H <a href="/index/Mat#McKay_Thompson">Index entries for McKay-Thompson series for Monster simple group</a>
%e T10c = 1/q - 2*q - 5*q^3 - 5*q^7 + 8*q^9 - 9*q^11 - 20*q^13 - 10*q^17 + ...
%t eta[q_]:= q^(1/24)*QPochhammer[q]; nmax = 110; e25a:= eta[q]/eta[q^25];
%t e5B := (eta[q]/eta[q^5])^6; T5a := (1 + 5/e25a)*(1 + e5B) + 5*(e25a - 5/e25a)*(e5B/(e25a)^3); a:= CoefficientList[Series[((q (T5a - 4) + O[q]^nmax // Normal /. {q -> q^2}) + O[q]^nmax)^(1/2) // Normal, {q, 0, 60}], q]; Table[a[[n]], {n, 1, 50}] (* _G. C. Greubel_, Jun 18 2018 *)
%Y Cf. A000521, A007240, A007241, A007267, A014708, A045478, etc.
%K sign
%O 0,2
%A _N. J. A. Sloane_, Nov 27 2000