login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057085
a(n) = 9*a(n-1) - 9*a(n-2) for n>1, with a(0)=0, a(1)=1.
12
0, 1, 9, 72, 567, 4455, 34992, 274833, 2158569, 16953624, 133155495, 1045816839, 8213952096, 64513217313, 506693386953, 3979621526760, 31256353258263, 245490585583527, 1928108090927376, 15143557548094641, 118939045114505385, 934159388097696696
OFFSET
0,3
COMMENTS
Scaled Chebyshev U-polynomials evaluated at 3/2.
LINKS
A. F. Horadam, Special properties of the sequence W_n(a,b; p,q), Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=-9.
Wolfdieter Lang, On polynomials related to powers of the generating function of Catalan's numbers, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=9.
FORMULA
a(n) = A001906(n)*3^(n-1).
a(n) = S(n, 3)*3^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.
a(n) = A001906(n)*A000244(n)/3. - Robert G. Wilson v, Sep 21 2006
a(2k) = A004187(k)*9^k/3, a(2k-1) = A033890(k)*9^k.
G.f.: x/(1-9*x+9*x^2).
a(n) = (1/3)*Sum_{k=0..n} binomial(n, k)*Fibonacci(4*k). - Benoit Cloitre, Jun 21 2003
a(n+1) = Sum_{k=0..n} A109466(n,k)*9^k. - Philippe Deléham, Oct 28 2008
MATHEMATICA
f[n_]:= Fibonacci[2n]*3^(n-1); Table[f@n, {n, 0, 20}] (* or *)
a[0]=0; a[1]=1; a[n_]:= a[n]= 9(a[n-1] -a[n-2]); Table[a[n], {n, 0, 20}] (* or *)
CoefficientList[Series[x/(1-9x +9x^2), {x, 0, 20}], x] (* Robert G. Wilson v Sep 21 2006 *)
PROG
(PARI) a(n)=(1/3)*sum(k=0, n, binomial(n, k)*fibonacci(4*k)) \\ Benoit Cloitre
(PARI) concat(0, Vec(x/(1-9*x+9*x^2) + O(x^30))) \\ Colin Barker, Jun 14 2015
(Sage) [lucas_number1(n, 9, 9) for n in range(0, 21)] # Zerinvary Lajos, Apr 23 2009
(Magma) [3^(n-1)*Fibonacci(2*n): n in [0..30]]; // G. C. Greubel, May 02 2022
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Aug 11 2000
EXTENSIONS
Edited by N. J. A. Sloane, Sep 16 2005
STATUS
approved