login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A006634
From generalized Catalan numbers.
(Formerly M4648)
9
1, 9, 72, 570, 4554, 36855, 302064, 2504304, 20974005, 177232627, 1509395976, 12943656180, 111676661460, 968786892675, 8445123522144, 73940567860896, 649942898236596, 5733561315124260, 50744886833898400, 450461491952952690, 4009721145437152530, 35782256673785401065
OFFSET
0,2
REFERENCES
H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Plouffe, Simon, Approximations of generating functions and a few conjectures, arXiv:0911.4975 [math.NT], 2002.
FORMULA
G.f.: 4F3([9/4, 5/2, 11/4, 3],[10/3, 11/3, 4],256/27*x). - Simon Plouffe, Master's Thesis, UQAM, 1992
G.f.: g^9 where g = 1+x*g^4 is the g.f. of A002293. - Mark van Hoeij, Apr 22 2013
MAPLE
series(RootOf(g = 1+x*g^4, g)^9, x=0, 30); # Mark van Hoeij, Apr 22 2013
MATHEMATICA
f[x_] := HypergeometricPFQ[ {9/4, 5/2, 11/4, 3}, {10/3, 11/3, 4}, 256/27*x]; Series[f[x], {x, 0, 16}] // CoefficientList[#, x]& (* Jean-François Alcover, Apr 23 2013, after Simon Plouffe *)
PROG
(PARI)
N = 3*66; x = 'x + O('x^N);
g=serreverse(x-x^4)/x;
gf=g^9; v=Vec(gf);
vector(#v\3, n, v[3*n-2])
/* Joerg Arndt, Apr 23 2013 */
CROSSREFS
Sequence in context: A084327 A057085 A076765 * A129328 A162960 A163391
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Joerg Arndt, Apr 23 2013
STATUS
approved