login
A006636
From generalized Catalan numbers.
(Formerly M4516)
1
8, 36, 102, 231, 456, 819, 1372, 2178, 3312, 4862, 6930, 9633, 13104, 17493, 22968, 29716, 37944, 47880, 59774, 73899, 90552, 110055, 132756, 159030, 189280, 223938, 263466, 308357, 359136, 416361, 480624, 552552, 632808, 722092, 821142, 930735
OFFSET
0,1
REFERENCES
H. M. Finucan, Some decompositions of generalized Catalan numbers, pp. 275-293 of Combinatorial Mathematics IX. Proc. Ninth Australian Conference (Brisbane, August 1981). Ed. E. J. Billington, S. Oates-Williams and A. P. Street. Lecture Notes Math., 952. Springer-Verlag, 1982.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
A. G. Shannon, Catalan triangles and Finucan's hidden folders. Notes on Number Theory and Discrete Mathematics, 22(2), 10-16, (2016).
FORMULA
From Sean A. Irvine, May 30 2017: (Start)
a(n) = (n + 1)*(n + 2)*(n + 4)*(n + 8)*(n + 15)/120.
G.f: (2 - x)^3/(x - 1)^6. (End)
E.g.f.: exp(x)*(960 + 3360*x + 2280*x^2 + 500*x^3 + 40*x^4 + x^5)/120. - Stefano Spezia, Oct 15 2022
CROSSREFS
Cf. A181289.
Sequence in context: A245360 A032768 A224410 * A325656 A357716 A341987
KEYWORD
nonn,easy
AUTHOR
EXTENSIONS
a(6) and a(8) corrected and more terms from Sean A. Irvine, May 30 2017
STATUS
approved