login
A245360
Perfect powers which are the sum of two consecutive primes.
1
8, 36, 100, 128, 144, 216, 576, 1764, 2304, 3844, 5184, 7056, 8100, 8192, 12100, 14400, 14884, 21952, 30276, 41616, 43264, 48400, 53824, 57600, 69696, 74088, 93636, 106276, 112896, 138384, 148996, 166464, 168100, 197136, 206116, 207936, 219024, 220900, 224676, 272484, 279936
OFFSET
1,1
LINKS
EXAMPLE
47 + 53 = 100 = 10^2, so 100 is a member of this sequence.
MATHEMATICA
Select[Total/@Partition[Prime[Range[13100]], 2, 1], GCD@@FactorInteger[#][[All, 2]]>1&] (* Harvey P. Dale, Jan 22 2019 *)
PROG
(PARI) for(n=1, 10^5, q=prime(n)+prime(n+1); if(ispower(q), print1(q, ", ")))
(PARI) m=10^8; v=[]; forstep(b=2, sqrt(m), 2, forprime(p=2, 40, n=b^p; if(n>m, break); if(n==precprime(n/2)+nextprime(n/2+1), v=concat(v, n)))); v=vecsort(v) \\ Faster program. Jens Kruse Andersen, Jul 20 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
Derek Orr, Jul 18 2014
STATUS
approved