login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224159
Number of 3 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
1
8, 36, 89, 187, 373, 702, 1252, 2130, 3479, 5486, 8391, 12497, 18181, 25906, 36234, 49840, 67527, 90242, 119093, 155367, 200549, 256342, 324688, 407790, 508135, 628518, 772067, 942269, 1142997, 1378538, 1653622, 1973452, 2343735, 2770714
OFFSET
1,1
COMMENTS
Row 3 of A224158.
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (47/144)*n^4 - (3/16)*n^3 + (1111/180)*n^2 - (199/60)*n + 20 for n>2.
Conjectures from Colin Barker, Aug 28 2018: (Start)
G.f.: x*(8 - 20*x + 5*x^2 + 40*x^3 - 47*x^4 - 5*x^5 + 41*x^6 - 27*x^7 + 6*x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)
EXAMPLE
Some solutions for n=3:
..0..0..1....0..0..1....0..0..0....0..1..0....1..0..0....0..1..1....1..1..0
..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....1..1..1....1..0..0
..1..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..0....1..1..0
CROSSREFS
Cf. A224158.
Sequence in context: A321778 A009923 A187287 * A321251 A035006 A245360
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 31 2013
STATUS
approved