|
|
A224159
|
|
Number of 3 X n 0..1 arrays with diagonals and rows unimodal and antidiagonals nondecreasing.
|
|
1
|
|
|
8, 36, 89, 187, 373, 702, 1252, 2130, 3479, 5486, 8391, 12497, 18181, 25906, 36234, 49840, 67527, 90242, 119093, 155367, 200549, 256342, 324688, 407790, 508135, 628518, 772067, 942269, 1142997, 1378538, 1653622, 1973452, 2343735, 2770714
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = (1/720)*n^6 + (1/240)*n^5 + (47/144)*n^4 - (3/16)*n^3 + (1111/180)*n^2 - (199/60)*n + 20 for n>2.
G.f.: x*(8 - 20*x + 5*x^2 + 40*x^3 - 47*x^4 - 5*x^5 + 41*x^6 - 27*x^7 + 6*x^8) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>9.
(End)
|
|
EXAMPLE
|
Some solutions for n=3:
..0..0..1....0..0..1....0..0..0....0..1..0....1..0..0....0..1..1....1..1..0
..1..1..0....1..1..0....0..0..0....1..0..0....0..1..0....1..1..1....1..0..0
..1..1..1....1..1..0....1..0..0....0..1..0....1..0..0....1..1..0....1..1..0
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|