login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A224410
Number of 3 X n 0..1 arrays with rows unimodal and antidiagonals nondecreasing.
1
8, 36, 100, 228, 465, 879, 1568, 2668, 4362, 6890, 10560, 15760, 22971, 32781, 45900, 63176, 85612, 114384, 150860, 196620, 253477, 323499, 409032, 512724, 637550, 786838, 964296, 1174040, 1420623, 1709065, 2044884, 2434128, 2883408, 3399932
OFFSET
1,1
COMMENTS
Row 3 of A224409.
LINKS
FORMULA
Empirical: a(n) = (1/720)*n^6 + (1/48)*n^5 + (29/144)*n^4 + (13/16)*n^3 + (2087/360)*n^2 + (7/6)*n.
Conjectures from Colin Barker, Aug 30 2018: (Start)
G.f.: x*(8 - 20*x + 16*x^2 + 4*x^3 - 11*x^4 + 4*x^5) / (1 - x)^7.
a(n) = 7*a(n-1) - 21*a(n-2) + 35*a(n-3) - 35*a(n-4) + 21*a(n-5) - 7*a(n-6) + a(n-7) for n>7.
(End)
EXAMPLE
Some solutions for n=3:
..0..1..0....1..0..0....1..0..0....1..1..0....1..1..0....1..1..0....0..1..1
..1..1..0....0..1..0....1..1..0....1..0..0....1..0..0....1..1..0....1..1..1
..1..0..0....1..0..0....1..1..1....0..0..0....1..1..0....1..1..0....1..1..0
CROSSREFS
Cf. A224409.
Sequence in context: A035006 A245360 A032768 * A006636 A325656 A357716
KEYWORD
nonn
AUTHOR
R. H. Hardin, Apr 05 2013
STATUS
approved