login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 9*a(n-1) - 9*a(n-2) for n>1, with a(0)=0, a(1)=1.
12

%I #47 Dec 30 2023 23:50:34

%S 0,1,9,72,567,4455,34992,274833,2158569,16953624,133155495,1045816839,

%T 8213952096,64513217313,506693386953,3979621526760,31256353258263,

%U 245490585583527,1928108090927376,15143557548094641,118939045114505385,934159388097696696

%N a(n) = 9*a(n-1) - 9*a(n-2) for n>1, with a(0)=0, a(1)=1.

%C Scaled Chebyshev U-polynomials evaluated at 3/2.

%H Colin Barker, <a href="/A057085/b057085.txt">Table of n, a(n) for n = 0..1000</a>

%H A. F. Horadam, <a href="http://www.fq.math.ca/Scanned/5-5/horadam.pdf">Special properties of the sequence W_n(a,b; p,q)</a>, Fib. Quart., 5.5 (1967), 424-434. Case n->n+1, a=0,b=1; p=9, q=-9.

%H Wolfdieter Lang, <a href="http://www.fq.math.ca/Scanned/38-5/lang.pdf">On polynomials related to powers of the generating function of Catalan's numbers</a>, Fib. Quart. 38 (2000) 408-419. Eqs.(38) and (45),lhs, m=9.

%H <a href="/index/Ch#Cheby">Index entries for sequences related to Chebyshev polynomials.</a>

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (9,-9).

%F a(n) = A001906(n)*3^(n-1).

%F a(n) = S(n, 3)*3^n with S(n, x) := U(n, x/2), Chebyshev's polynomials of the 2nd kind, A049310.

%F a(n) = A001906(n)*A000244(n)/3. - _Robert G. Wilson v_, Sep 21 2006

%F a(2k) = A004187(k)*9^k/3, a(2k-1) = A033890(k)*9^k.

%F G.f.: x/(1-9*x+9*x^2).

%F a(n) = (1/3)*Sum_{k=0..n} binomial(n, k)*Fibonacci(4*k). - _Benoit Cloitre_, Jun 21 2003

%F a(n+1) = Sum_{k=0..n} A109466(n,k)*9^k. - _Philippe Deléham_, Oct 28 2008

%t f[n_]:= Fibonacci[2n]*3^(n-1); Table[f@n, {n, 0, 20}] (* or *)

%t a[0]=0; a[1]=1; a[n_]:= a[n]= 9(a[n-1] -a[n-2]); Table[a[n], {n, 0, 20}] (* or *)

%t CoefficientList[Series[x/(1-9x +9x^2), {x, 0, 20}], x] (* _Robert G. Wilson v_ Sep 21 2006 *)

%o (PARI) a(n)=(1/3)*sum(k=0,n,binomial(n,k)*fibonacci(4*k)) \\ _Benoit Cloitre_

%o (PARI) concat(0, Vec(x/(1-9*x+9*x^2) + O(x^30))) \\ _Colin Barker_, Jun 14 2015

%o (Sage) [lucas_number1(n,9,9) for n in range(0, 21)] # _Zerinvary Lajos_, Apr 23 2009

%o (Magma) [3^(n-1)*Fibonacci(2*n): n in [0..30]]; // _G. C. Greubel_, May 02 2022

%Y Cf. A000045, A000244, A001906, A004187, A030191, A033890, A049310, A109466.

%K nonn,easy

%O 0,3

%A _Wolfdieter Lang_, Aug 11 2000

%E Edited by _N. J. A. Sloane_, Sep 16 2005