login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A053096
When the Euler phi function is iterated with initial value A002110(n) = primorial, a(n) = number of iterations required to reach the fixed number = 1.
2
1, 2, 4, 6, 9, 12, 16, 19, 23, 27, 31, 35, 40, 44, 49, 54, 59, 64, 69, 74, 79, 84, 90, 96, 102, 108, 114, 120, 125, 131, 136, 142, 149, 155, 161, 167, 173, 178, 185, 191, 198, 204, 210, 217, 223, 229, 235, 241, 248, 254, 261, 268, 275, 282, 290, 297, 304, 310
OFFSET
1,2
COMMENTS
Analogous to A053025, A053034, A053044. For comparison: iteration of, e.g., A000005 to primorial i.v. is trivially computable: q(n)=A002110(n), d(q(n)) = 2^n, d(d(q(n))) = n+1 and so A036450(A002110(n)) = A000005(n+1).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
FORMULA
a(n) is the smallest number such that Nest[EulerPhi, A002110, a(n)]=1
EXAMPLE
n=7, A002110(7)=510510; the corresponding iteration chain is {510510, 92160, 24576, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}. Its length is 17, so the required number of iterations is a(7)=16.
MATHEMATICA
Array[-2 + Length@ FixedPointList[EulerPhi, Product[Prime@ i, {i, #}]] &, 58] (* Michael De Vlieger, Nov 20 2017 *)
PROG
(PARI) a(n)=my(t=prod(i=1, n, prime(i)-1), s=1); while(t>1, t=eulerphi(t); s++); s \\ Charles R Greathouse IV, Jan 06 2016
(PARI) A003434(n)=my(s); while(n>1, n=eulerphi(n); s++); s
first(n)=my(s=1); vector(n, k, s+=A003434(prime(k))-1) \\ Charles R Greathouse IV, Jan 06 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Labos Elemer, Feb 28 2000
STATUS
approved