login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A257637
Maximal number of edges in an n-vertex triangle-free graph with maximal degree at most 4.
1
0, 1, 2, 4, 6, 9, 12, 16, 17, 20, 22, 24, 26, 28, 30, 32, 34, 36, 38, 40, 42, 44, 46, 48, 50, 52, 54, 56, 58, 60, 62, 64, 66, 68, 70, 72, 74, 76, 78, 80, 82, 84, 86, 88, 90, 92, 94, 96, 98, 100, 102, 104, 106, 108, 110, 112, 114, 116, 118, 120
OFFSET
1,3
COMMENTS
For n <= 8, a(n) is the Turan number T(3,n), realized by a complete bipartite graph K(m, m) if n = 2m or K(m, m+1) if n = 2m+1, since then that graph has maximal degree <= 4.
For n >= 10, any 4-regular triangle-free graph (i.e., graph with no three-cliques) will do.
For n = 9, there is no 4-regular triangle-free graph, as can be seen from inspection.
FORMULA
a(n) = floor(n^2/4) = A002620(n), if 1 <= n <= 8.
a(9) = 17.
a(n) = 2*n = A005843(n), if n >= 10.
From Chai Wah Wu, Feb 03 2021: (Start)
a(n) = 2*a(n-1) - a(n-2) for n > 11.
G.f.: x*(-x^10 + 2*x^9 - 3*x^8 + x^7 + x^5 + x^3 + x)/(x - 1)^2. (End)
PROG
(PARI) a(n)=if(n>9, 2*n, if(n<9, n^2\4, 17)) \\ Charles R Greathouse IV, Jan 06 2016
CROSSREFS
Sequence in context: A375983 A135146 A256956 * A258027 A053096 A155752
KEYWORD
easy,nonn
AUTHOR
Jörgen Backelin, Nov 04 2015
STATUS
approved