login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

When the Euler phi function is iterated with initial value A002110(n) = primorial, a(n) = number of iterations required to reach the fixed number = 1.
2

%I #14 Nov 20 2017 23:25:14

%S 1,2,4,6,9,12,16,19,23,27,31,35,40,44,49,54,59,64,69,74,79,84,90,96,

%T 102,108,114,120,125,131,136,142,149,155,161,167,173,178,185,191,198,

%U 204,210,217,223,229,235,241,248,254,261,268,275,282,290,297,304,310

%N When the Euler phi function is iterated with initial value A002110(n) = primorial, a(n) = number of iterations required to reach the fixed number = 1.

%C Analogous to A053025, A053034, A053044. For comparison: iteration of, e.g., A000005 to primorial i.v. is trivially computable: q(n)=A002110(n), d(q(n)) = 2^n, d(d(q(n))) = n+1 and so A036450(A002110(n)) = A000005(n+1).

%H Charles R Greathouse IV, <a href="/A053096/b053096.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) is the smallest number such that Nest[EulerPhi, A002110, a(n)]=1

%e n=7, A002110(7)=510510; the corresponding iteration chain is {510510, 92160, 24576, 8192, 4096, 2048, 1024, 512, 256, 128, 64, 32, 16, 8, 4, 2, 1}. Its length is 17, so the required number of iterations is a(7)=16.

%t Array[-2 + Length@ FixedPointList[EulerPhi, Product[Prime@ i, {i, #}]] &, 58] (* _Michael De Vlieger_, Nov 20 2017 *)

%o (PARI) a(n)=my(t=prod(i=1,n,prime(i)-1),s=1); while(t>1, t=eulerphi(t); s++); s \\ _Charles R Greathouse IV_, Jan 06 2016

%o (PARI) A003434(n)=my(s);while(n>1,n=eulerphi(n);s++);s

%o first(n)=my(s=1); vector(n,k,s+=A003434(prime(k))-1) \\ _Charles R Greathouse IV_, Jan 06 2016

%Y Cf. A000010, A002110, A003434.

%K nonn

%O 1,2

%A _Labos Elemer_, Feb 28 2000