OFFSET
0,2
COMMENTS
a(n) = A020698(n) - 4*A020698(n-1) + 4*A020698(n-2) (n>=2). Kekulé numbers for certain benzenoids. - Emeric Deutsch, Jun 12 2005
REFERENCES
S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 1058
Richard P. Stanley, Some Linear Recurrences Motivated by Stern's Diatomic Array, arXiv:1901.04647 [math.CO], 2019. See p. 3.
Zeying Xu, Graphical zonotopes with the same face vector, arXiv:1809.08764 [math.CO], 2018.
Index entries for linear recurrences with constant coefficients, signature (5,-2).
FORMULA
a(n) = A005824(2n).
G.f.: (1-2*x)/(1-5*x+2*x^2).
a(n) = Sum_{alpha=RootOf(1-5*z+2*z^2)} (1 + 6*alpha)*alpha^(-1-n)/17.
a(n) = [M^(n+1)]_2,2, where M is the 3 X 3 matrix defined as follows: M = [2,1,2; 1,1,1; 2,1,2]. - Simone Severini, Jun 12 2006
a(n-1) = Sum_{k=0..n} A147703(n,k)*(-1)^k*2^(n-k), n>1. - Philippe Deléham, Nov 29 2008
a(n) = (a(n-1)^2 + 2^n)/a(n-2). - Irene Sermon, Oct 29 2013
MAPLE
spec:= [S, {S=Sequence(Union(Prod(Sequence(Union(Z, Z)), Union(Z, Z)), Z))}, unlabeled ]: seq(combstruct[count ](spec, size=n), n=0..20);
a[0]:=1: a[1]:=3: for n from 2 to 25 do a[n]:=5*a[n-1]-2*a[n-2] od: seq(a[n], n=0..25); # Emeric Deutsch
MATHEMATICA
a[0]=1; a[1]=3; a[n_]:= a[n] = 5a[n-1]-2a[n-2]; Table[ a[n], {n, 0, 30}]
LinearRecurrence[{5, -2}, {1, 3}, 30] (* Harvey P. Dale, Apr 08 2014 *)
CoefficientList[Series[(1-2x)/(1-5x+2x^2), {x, 0, 30}], x] (* Vincenzo Librandi, Apr 09 2014 *)
PROG
(PARI) Vec((1-2*x)/(1-5*x+2*x^2)+O(x^30)) \\ Charles R Greathouse IV, Nov 20 2011
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-5*x+2*x^2) )); // G. C. Greubel, Feb 10 2019
(Magma) a:=[1, 3]; [n le 2 select a[n] else 5*Self(n-1)-2*Self(n-2):n in [1..25]]; // Marius A. Burtea, Oct 23 2019
(Sage)
def A052984_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( (1-2*x)/(1-5*x+2*x^2) ).list()
A052984_list(30) # G. C. Greubel, Feb 10 2019
(GAP) a:=[1, 3];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # G. C. Greubel, Oct 23 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
encyclopedia(AT)pommard.inria.fr, Jan 25 2000
EXTENSIONS
Edited by Robert G. Wilson v, Dec 29 2002
STATUS
approved