Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #74 Sep 08 2022 08:45:00
%S 1,3,13,59,269,1227,5597,25531,116461,531243,2423293,11053979,
%T 50423309,230008587,1049196317,4785964411,21831429421,99585218283,
%U 454263232573,2072145726299,9452202166349,43116719379147,196679192563037
%N a(n) = 5*a(n-1) - 2*a(n-2) for n>1, with a(0) = 1, a(1) = 3.
%C a(n) = A020698(n) - 4*A020698(n-1) + 4*A020698(n-2) (n>=2). Kekulé numbers for certain benzenoids. - _Emeric Deutsch_, Jun 12 2005
%D S. J. Cyvin and I. Gutman, Kekulé structures in benzenoid hydrocarbons, Lecture Notes in Chemistry, No. 46, Springer, New York, 1988 (see p. 78).
%D Stanley, Richard P. "Some Linear Recurrences Motivated by Stern’s Diatomic Array." The American Mathematical Monthly 127.2 (2020): 99-111.
%H Vincenzo Librandi, <a href="/A052984/b052984.txt">Table of n, a(n) for n = 0..200</a>
%H INRIA Algorithms Project, <a href="http://ecs.inria.fr/services/structure?nbr=1058">Encyclopedia of Combinatorial Structures 1058</a>
%H Richard P. Stanley, <a href="https://arxiv.org/abs/1901.04647">Some Linear Recurrences Motivated by Stern's Diatomic Array</a>, arXiv:1901.04647 [math.CO], 2019. See p. 3.
%H Zeying Xu, <a href="https://arxiv.org/abs/1809.08764">Graphical zonotopes with the same face vector</a>, arXiv:1809.08764 [math.CO], 2018.
%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (5,-2).
%F a(n) = A005824(2n).
%F G.f.: (1-2*x)/(1-5*x+2*x^2).
%F a(n) = Sum_{alpha=RootOf(1-5*z+2*z^2)} (1 + 6*alpha)*alpha^(-1-n)/17.
%F a(n) = [M^(n+1)]_2,2, where M is the 3 X 3 matrix defined as follows: M = [2,1,2; 1,1,1; 2,1,2]. - _Simone Severini_, Jun 12 2006
%F a(n-1) = Sum_{k=0..n} A147703(n,k)*(-1)^k*2^(n-k), n>1. - _Philippe Deléham_, Nov 29 2008
%F a(n) = (a(n-1)^2 + 2^n)/a(n-2). - _Irene Sermon_, Oct 29 2013
%F a(n) = A107839(n) - 2*A107839(n-1). - _R. J. Mathar_, Feb 27 2019
%p spec:= [S,{S=Sequence(Union(Prod(Sequence(Union(Z,Z)),Union(Z,Z)),Z))}, unlabeled ]: seq(combstruct[count ](spec,size=n), n=0..20);
%p a[0]:=1: a[1]:=3: for n from 2 to 25 do a[n]:=5*a[n-1]-2*a[n-2] od: seq(a[n],n=0..25); # _Emeric Deutsch_
%t a[0]=1; a[1]=3; a[n_]:= a[n] = 5a[n-1]-2a[n-2]; Table[ a[n], {n, 0, 30}]
%t LinearRecurrence[{5,-2},{1,3},30] (* _Harvey P. Dale_, Apr 08 2014 *)
%t CoefficientList[Series[(1-2x)/(1-5x+2x^2), {x, 0, 30}], x] (* _Vincenzo Librandi_, Apr 09 2014 *)
%o (PARI) Vec((1-2*x)/(1-5*x+2*x^2)+O(x^30)) \\ _Charles R Greathouse IV_, Nov 20 2011
%o (Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( (1-2*x)/(1-5*x+2*x^2) )); // _G. C. Greubel_, Feb 10 2019
%o (Magma) a:=[1,3]; [n le 2 select a[n] else 5*Self(n-1)-2*Self(n-2):n in [1..25]]; // _Marius A. Burtea_, Oct 23 2019
%o (Sage)
%o def A052984_list(prec):
%o P.<x> = PowerSeriesRing(ZZ, prec)
%o return P( (1-2*x)/(1-5*x+2*x^2) ).list()
%o A052984_list(30) # _G. C. Greubel_, Feb 10 2019
%o (GAP) a:=[1,3];; for n in [3..30] do a[n]:=5*a[n-1]-2*a[n-2]; od; a; # _G. C. Greubel_, Oct 23 2019
%Y Cf. A005824, A020698.
%K nonn,easy
%O 0,2
%A encyclopedia(AT)pommard.inria.fr, Jan 25 2000
%E Edited by _Robert G. Wilson v_, Dec 29 2002