login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A047473
Numbers that are congruent to {2, 3} mod 8.
0
2, 3, 10, 11, 18, 19, 26, 27, 34, 35, 42, 43, 50, 51, 58, 59, 66, 67, 74, 75, 82, 83, 90, 91, 98, 99, 106, 107, 114, 115, 122, 123, 130, 131, 138, 139, 146, 147, 154, 155, 162, 163, 170, 171, 178, 179, 186, 187, 194, 195, 202, 203, 210, 211, 218, 219, 226, 227, 234
OFFSET
1,1
COMMENTS
Numbers k such that k and k+2 have the same digital binary sum. - Benoit Cloitre, Dec 01 2002
Also, numbers k such that k*(3*k + 1)/8 + 1/4 is a nonnegative integer. - Bruno Berselli, Feb 14 2017
FORMULA
a(n) = 8*n - a(n-1) - 11 for n>1, a(1)=2. - Vincenzo Librandi, Aug 06 2010
From R. J. Mathar, Oct 08 2011: (Start)
a(n) = 4*n - 7/2 - 3*(-1)^n/2.
G.f.: x*(2 + x + 5*x^2)/((1 + x)*(1 - x)^2). (End)
a(1)=2, a(2)=3, a(3)=10; for n>3, a(n) = a(n-1) + a(n-2) - a(n-3). - Harvey P. Dale, Sep 28 2012
Sum_{n>=1} (-1)^(n+1)/a(n) = (2-sqrt(2))*Pi/16 + sqrt(2)*log(sqrt(2)+1)/8 - log(2)/8. - Amiram Eldar, Dec 18 2021
MATHEMATICA
Flatten[# + {2, 3} &/@ (8 Range[0, 30])] (* or *) LinearRecurrence[{1, 1, -1}, {2, 3, 10}, 60] (* Harvey P. Dale, Sep 28 2012 *)
CROSSREFS
Union of A017089 and A017101.
Sequence in context: A359251 A032804 A248407 * A270474 A008509 A281366
KEYWORD
nonn,easy
EXTENSIONS
More terms from Vincenzo Librandi, Aug 06 2010
STATUS
approved