

A281366


Lexicographically least strictly increasing sequence such that, for any n>0, Sum_{k=1..n} a(k) can be computed without carries in base 9 (the numbers are written in base 9).


2



1, 2, 3, 10, 11, 20, 21, 100, 110, 200, 210, 1000, 1100, 2000, 2100, 10000, 11000, 20000, 21000, 100000, 110000, 200000, 210000, 1000000, 1100000, 2000000, 2100000, 10000000, 11000000, 20000000, 21000000, 100000000, 110000000, 200000000, 210000000
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Base 9 analog of A278742.


LINKS

Colin Barker, Table of n, a(n) for n = 1..1000
N. J. A. Sloane, Illustration of initial terms
Index entries for linear recurrences with constant coefficients, signature (0,0,0,10).


FORMULA

From Colin Barker, Jan 29 2017: (Start)
G.f.: x*(1 + 2*x + 3*x^2 + 10*x^3 + x^4  9*x^6)/(1  10*x^4).
a(n) = 10*a(n4) for n>7. (End)


PROG

(PARI) Vec(x*(1 + 2*x + 3*x^2 + 10*x^3 + x^4  9*x^6) / (1  10*x^4) + O(x^60)) \\ Colin Barker, Jan 29 2017


CROSSREFS

Cf. A278742, A278743, A280051, A280052.
See A280731 for these numbers written in base 10.
Sequence in context: A047473 A270474 A008509 * A324921 A307034 A081868
Adjacent sequences: A281363 A281364 A281365 * A281367 A281368 A281369


KEYWORD

nonn,base,easy


AUTHOR

N. J. A. Sloane, Jan 28 2017


EXTENSIONS

More terms from Colin Barker, Jan 29 2017


STATUS

approved



