login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A270474
Integers k such that A256832(k) is not divisible by k*(k+1)/2.
1
2, 3, 10, 11, 18, 19, 42, 43, 66, 67, 82, 83, 106, 107, 130, 131, 138, 139, 162, 163, 210, 211, 282, 283, 306, 307, 330, 331, 346, 347, 466, 467, 490, 491, 498, 499, 522, 523, 546, 547, 562, 563, 570, 571, 586, 587, 618, 619, 658, 659, 690, 691, 738, 739, 786, 787, 810, 811, 858, 859
OFFSET
1,1
COMMENTS
It appears that the odd numbers in the sequence are prime.
This holds at least up to a million. - Charles R Greathouse IV, Feb 24 2022
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
3 is a term because (1*2*5) is not divisible by (1+2+3).
MATHEMATICA
nn = 10^3; Function[k, Select[Range@ nn, ! Divisible[k[[#]], # (# + 1)/2] &]]@ FoldList[Times, LinearRecurrence[{2, 1}, {1, 2}, nn]] (* Michael De Vlieger, Mar 19 2016, after Harvey P. Dale at A256832 *)
PROG
(PARI) a000129(n) = ([2, 1; 1, 0]^n)[2, 1];
f(n) = prod(k=1, n, a000129(k)); \\ A256832
for(n=1, 1e3, if(f(n) % (n*(n+1)/2) != 0, print1(n, ", ")));
(PARI) {g(n) = my(t, m=1); if( n<2, 0, while(1, t=contfracpnqn(concat([n, vector(m, i, 2), n])); t=contfrac(n*t[1, 1]/t[2, 1]); if(t[1]<n^2 || t[#t]<n^2, m++, break)); m)};
for(k=1, 1000, if(k==g(k), print1(g(k)-1, ", ", g(k), ", "))); \\ Bill McEachen, Feb 14 2022 (from A213891 code, faster)
(PARI) is(n)=my(m=n^2+n, q=Mod([2, 1; 1, 0], m), Q=q, P=Mod(1, m)); for(k=2, n, P*=(Q*=q)[2, 1]; if(P==0, return(0))); 1 \\ Charles R Greathouse IV, Feb 14 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Altug Alkan, Mar 17 2016
STATUS
approved