login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A047472
Numbers that are congruent to {0, 1, 3} (mod 8).
2
0, 1, 3, 8, 9, 11, 16, 17, 19, 24, 25, 27, 32, 33, 35, 40, 41, 43, 48, 49, 51, 56, 57, 59, 64, 65, 67, 72, 73, 75, 80, 81, 83, 88, 89, 91, 96, 97, 99, 104, 105, 107, 112, 113, 115, 120, 121, 123, 128, 129, 131, 136, 137, 139, 144, 145, 147, 152, 153, 155
OFFSET
1,3
FORMULA
Equals partial sums of (0, 1, 2, 5, 1, 2, 5, 1, 2, 5, ...). - Gary W. Adamson, Jun 19 2008
From Colin Barker, Jan 26 2012: (Start)
G.f.: x^2*(1+2*x+5*x^2)/(1-x-x^3+x^4).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>4. (End)
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = 8*n/3 - 4 - cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k-5, a(3k-1) = 8k-7, a(3k-2) = 8k-8. (End)
MAPLE
A047472:=n->8*n/3-4-cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047472(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016
MATHEMATICA
Select[Range[0, 150], MemberQ[{0, 1, 3}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)
LinearRecurrence[{1, 0, 1, -1}, {0, 1, 3, 8}, 60] (* Harvey P. Dale, Aug 31 2024 *)
PROG
(Magma) [n : n in [0..150] | n mod 8 in [0, 1, 3]]; // Wesley Ivan Hurt, Jun 09 2016
CROSSREFS
Sequence in context: A024550 A173179 A225555 * A304204 A379079 A028960
KEYWORD
nonn,easy
STATUS
approved