

A047472


Numbers that are congruent to {0, 1, 3} (mod 8).


2



0, 1, 3, 8, 9, 11, 16, 17, 19, 24, 25, 27, 32, 33, 35, 40, 41, 43, 48, 49, 51, 56, 57, 59, 64, 65, 67, 72, 73, 75, 80, 81, 83, 88, 89, 91, 96, 97, 99, 104, 105, 107, 112, 113, 115, 120, 121, 123, 128, 129, 131, 136, 137, 139, 144, 145, 147, 152, 153, 155
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


LINKS

Table of n, a(n) for n=1..60.
Index entries for linear recurrences with constant coefficients, signature (1,0,1,1).


FORMULA

Equals partial sums of (0, 1, 2, 5, 1, 2, 5, 1, 2, 5, ...).  Gary W. Adamson, Jun 19 2008
From Colin Barker, Jan 26 2012: (Start)
G.f.: x^2*(1+2*x+5*x^2)/(1xx^3+x^4).
a(n) = a(n1) + a(n3)  a(n4) for n>4. (End)
From Wesley Ivan Hurt, Jun 09 2016: (Start)
a(n) = 8*n/3  4  cos(2*n*Pi/3) + 5*sin(2*n*Pi/3)/(3*sqrt(3)).
a(3k) = 8k5, a(3k1) = 8k7, a(3k2) = 8k8. (End)


MAPLE

A047472:=n>8*n/34cos(2*n*Pi/3)+5*sin(2*n*Pi/3)/(3*sqrt(3)): seq(A047472(n), n=1..100); # Wesley Ivan Hurt, Jun 09 2016


MATHEMATICA

Select[Range[0, 150], MemberQ[{0, 1, 3}, Mod[#, 8]] &] (* Wesley Ivan Hurt, Jun 09 2016 *)


PROG

(Magma) [n : n in [0..150]  n mod 8 in [0, 1, 3]]; // Wesley Ivan Hurt, Jun 09 2016


CROSSREFS

Sequence in context: A024550 A173179 A225555 * A304204 A028960 A139491
Adjacent sequences: A047469 A047470 A047471 * A047473 A047474 A047475


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane


STATUS

approved



