login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A035277
One eighth of deca-factorial numbers.
10
1, 18, 504, 19152, 919296, 53319168, 3625703424, 282804867072, 24886828302336, 2438909173628928, 263402190751924224, 31081458508727058432, 3978426689117063479296, 549022883098154760142848, 81255386698526904501141504, 12838351098367250911180357632
OFFSET
1,2
FORMULA
a(n) = (Pochhammer(8/10,n)*10^n)/8.
8*a(n) = (10*n-2)(!^10) = Product_{j=1..n} (10*j-2).
a(n) = 2^(n+2)*A034301(n) where 4*A034301(n) = (5*n-1)(!^5).
E.g.f.: (-1 + (1-10*x)^(-4/5))/8.
Sum_{n>=1} 1/a(n) = 8*(e/10^2)^(1/10)*(Gamma(4/5) - Gamma(4/5, 1/10)). - Amiram Eldar, Dec 22 2022
MAPLE
seq( mul(10*j-2, j=1..n)/8, n=1..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[10^n*Pochhammer[4/5, n]/8, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
PROG
(PARI) vector(20, n, prod(j=1, n, 10*j-2)/8 ) \\ G. C. Greubel, Nov 11 2019
(Magma) [(&*[10*j-2: j in [1..n]])/8: n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [product( (10*j-2) for j in (1..n))/8 for n in (1..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([1..20], n-> Product([1..n], j-> 10*j-2)/8 ); # G. C. Greubel, Nov 11 2019
KEYWORD
easy,nonn
STATUS
approved