OFFSET
1,2
LINKS
FORMULA
2*a(n) = (10*n-8)(!^10) = Product_{j=1..n} (10*j-8).
E.g.f.: (-1 + (1-10*x)^(-1/5))/2.
a(n) = (Pochhammer(2/10,n)*10^n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/10^8)^(1/10)*(Gamma(1/5) - Gamma(1/5, 1/10)). - Amiram Eldar, Dec 22 2022
MAPLE
seq( mul(10*j-8, j=1..n)/2, n=1..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[10^n*Pochhammer[2/10, n]/2, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
PROG
(PARI) vector(20, n, prod(j=1, n, 10*j-8)/2 ) \\ G. C. Greubel, Nov 11 2019
(Magma) [(&*[10*j-8: j in [1..n]])/2: n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [product( (10*j-8) for j in (1..n))/2 for n in (1..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([1..20], n-> Product([1..n], j-> 10*j-8)/2 ); # G. C. Greubel, Nov 11 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
STATUS
approved