login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A035273 One quarter of deca-factorial numbers. 10
1, 14, 336, 11424, 502656, 27143424, 1737179136, 128551256064, 10798305509376, 1015040717881344, 105564234659659776, 12034322751201214464, 1492256021148950593536, 199962306833959379533824, 28794572184090150652870656, 4434364116349883200542081024 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
4*a(n) = (10*n-6)(!^10) = Product_{j=1..n} (10*j-6).
a(n) = 2^(n+1)*A034323(n) where 2*A034323(n)= (5*n-3)(!^5) = Product_{j=1..n} (5*j-3).
E.g.f.: (-1 + (1-10*x)^(-2/5))/4.
a(n) = (Pochhammer(4/10,n)*10^n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/10^6)^(1/10)*(Gamma(2/5) - Gamma(2/5, 1/10)). - Amiram Eldar, Dec 22 2022
MAPLE
seq( mul(10*j-6, j=1..n)/4, n=1..20); # G. C. Greubel, Nov 11 2019
MATHEMATICA
Table[10^n*Pochhammer[4/10, n]/4, {n, 20}] (* G. C. Greubel, Nov 11 2019 *)
PROG
(PARI) vector(20, n, prod(j=1, n, 10*j-6)/4 ) \\ G. C. Greubel, Nov 11 2019
(Magma) [(&*[10*j-6: j in [1..n]])/4: n in [1..20]]; // G. C. Greubel, Nov 11 2019
(Sage) [product( (10*j-6) for j in (1..n))/4 for n in (1..20)] # G. C. Greubel, Nov 11 2019
(GAP) List([1..20], n-> Product([1..n], j-> 10*j-6)/4 ); # G. C. Greubel, Nov 11 2019
CROSSREFS
Sequence in context: A060075 A222984 A278194 * A239783 A020143 A161927
KEYWORD
easy,nonn
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 26 21:28 EST 2024. Contains 370352 sequences. (Running on oeis4.)