OFFSET
0,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 0..100
FORMULA
a(n) = [x^(2*n+1)/(2*n+1)!] ( 1/5!*sin^5(x)/cos(x) ).
a(n) = (-1)^n*( 4^(n-2)*(4^n - 3) + 4^(n-1)*(4^(n+1) - 1)*Bernoulli(2*n + 2)/(n + 1) )/15.
a(n) = (-1)^n/(3!*2^6) * Sum_{k = 0..n} ( 25^(n-k) - 3*9^(n-k) + 2 )*binomial(2*n+1, 2*k)*2^(2*k)*E(2*k, 1/2), where E(n,x) is the Euler polynomial of order n.
a(n) = (-1)^n/(2^5*5!) * 2^(2*n+1)*( E(2*n+1, 3) - 5*E(2*n+1, 2) + 10*E(2*n+1, 1) - 10*E(2*n+1, 0) + 5*E(2*n+1, -1) - E(2*n+1, -2) ).
G.f. 1/5!*sin^5(x)/cos(x) = x^5/5! - 14*x^7/7! + 336*x^9/9! - 1408*x^11/11! + ....
MAPLE
seq((-1)^n*( 4^(n-2)*(4^n - 3) + 4^(n-1)*(4^(n+1) - 1)*bernoulli(2*n + 2)/(n + 1) )/15, n = 0..20);
PROG
(PARI) a(n)={my(m=2*n+1, A=O(x*x^m)); m!*polcoef(sin(x + A)^5/cos(x + A), m)/120} \\ Andrew Howroyd, May 04 2020
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Peter Bala, Nov 15 2016
EXTENSIONS
Terms a(15) and beyond from Andrew Howroyd, May 04 2020
STATUS
approved