login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A278079
Expansion of e.g.f. (1/3!)*sin^3(x)/cos(x) (coefficients of odd powers only).
3
0, 1, 0, 56, 1280, 59136, 3727360, 317295616, 34977546240, 4848147562496, 825249675345920, 169237314418507776, 41153580031698534400, 11708600267324004499456, 3853197364634932928839680, 1452327126187528216207425536, 621567950620088261848869109760
OFFSET
0,4
LINKS
Eric Weisstein's World of Mathematics, Euler Polynomial.
FORMULA
a(n) = [x^(2*n+1)/(2*n+1)!] ( 1/3!*sin^3(x)/cos(x) ).
a(n) = (-1)^n*( 2/3*4^n*(4^(n+1) - 1)*Bernoulli(2*n+2)/(2*n + 2) - 4^n/6 ).
a(n) = (-1)^(n+1)/(2^3*3!) * 2^(2*n+1)*( E(2*n+1,2) - 3*E(2*n+1,1) + 3*E(2*n+1,0) - E(2*n+1,-1) ), where E(n,x) is the Euler polynomial of order n.
a(n) = (-1)^(n+1)/8 * Sum_{k = 0..n} (9^(n-k) - 1)*binomial(2*n+1,2*k)*2^(2*k)* E(2*k, 1/2).
G.f. 1/3!*sin^3(x)/cos(x) = x^3/3! + 56*x^7/7! + 1280*x^9/9! + 59136*x^11/11! + ....
MAPLE
seq((-1)^n*( 2/3*4^n*(4^(n+1) - 1)*bernoulli(2*n+2)/(2*n + 2) - 4^n/6 ), n = 0..20);
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Nov 10 2016
STATUS
approved