login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of e.g.f. (1/3!)*sin^3(x)/cos(x) (coefficients of odd powers only).
3

%I #20 Feb 28 2023 11:20:59

%S 0,1,0,56,1280,59136,3727360,317295616,34977546240,4848147562496,

%T 825249675345920,169237314418507776,41153580031698534400,

%U 11708600267324004499456,3853197364634932928839680,1452327126187528216207425536,621567950620088261848869109760

%N Expansion of e.g.f. (1/3!)*sin^3(x)/cos(x) (coefficients of odd powers only).

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/EulerPolynomial.html">Euler Polynomial</a>.

%F a(n) = [x^(2*n+1)/(2*n+1)!] ( 1/3!*sin^3(x)/cos(x) ).

%F a(n) = (-1)^n*( 2/3*4^n*(4^(n+1) - 1)*Bernoulli(2*n+2)/(2*n + 2) - 4^n/6 ).

%F a(n) = (-1)^(n+1)/(2^3*3!) * 2^(2*n+1)*( E(2*n+1,2) - 3*E(2*n+1,1) + 3*E(2*n+1,0) - E(2*n+1,-1) ), where E(n,x) is the Euler polynomial of order n.

%F a(n) = (-1)^(n+1)/8 * Sum_{k = 0..n} (9^(n-k) - 1)*binomial(2*n+1,2*k)*2^(2*k)* E(2*k, 1/2).

%F G.f. 1/3!*sin^3(x)/cos(x) = x^3/3! + 56*x^7/7! + 1280*x^9/9! + 59136*x^11/11! + ....

%p seq((-1)^n*( 2/3*4^n*(4^(n+1) - 1)*bernoulli(2*n+2)/(2*n + 2) - 4^n/6 ), n = 0..20);

%Y Cf. A000182, A000364, A004174, A024235, A278080, A278194, A278195.

%K nonn,easy

%O 0,4

%A _Peter Bala_, Nov 10 2016