|
|
A160290
|
|
Numerator of Hermite(n, 28/29).
|
|
1
|
|
|
1, 56, 1454, -106960, -13326644, -26665184, 110583825736, 6461799278144, -940153204639600, -139598550546523264, 6414520381228962016, 2707260761541343173376, 32925146552816962489024, -52799543003992720712035840, -3676715662747488061659005824
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
G. C. Greubel, Table of n, a(n) for n = 0..372
|
|
FORMULA
|
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 29^n * Hermite(n, 28/29).
E.g.f.: exp(56*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(56/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
|
|
EXAMPLE
|
Numerators of 1, 56/29, 1454/841, -106960/24389, -13326644/707281, ...
|
|
MATHEMATICA
|
Table[29^n*HermiteH[n, 28/29], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
|
|
PROG
|
(PARI) a(n)=numerator(polhermite(n, 28/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(56*x - 841*x^2))) \\ G. C. Greubel, Oct 03 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(56/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
|
|
CROSSREFS
|
Cf. A009973 (denominators).
Sequence in context: A278079 A025597 A034202 * A030649 A319310 A022081
Adjacent sequences: A160287 A160288 A160289 * A160291 A160292 A160293
|
|
KEYWORD
|
sign,frac
|
|
AUTHOR
|
N. J. A. Sloane, Nov 12 2009
|
|
STATUS
|
approved
|
|
|
|