login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A160288
Numerator of Hermite(n, 26/29).
1
1, 52, 1022, -121784, -11489780, 221894192, 108167547784, 3385356299104, -1097526180055408, -102624715723624640, 11277866096050285024, 2312596755465981266048, -88408047224891347679552, -51274671368019715953249536, -733152550517551021207891840
OFFSET
0,2
LINKS
FORMULA
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 29^n * Hermite(n, 26/29).
E.g.f.: exp(52*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(52/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 52/29, 1022/841, -121784/24389, -11489780/707281, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 26/29]] (* Harvey P. Dale, Nov 24 2017 *)
Table[29^n*HermiteH[n, 26/29], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 26/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(52*x - 841*x^2))) \\ G. C. Greubel, Oct 03 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(52/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
CROSSREFS
Cf. A009973 (denominators).
Sequence in context: A278001 A083936 A273655 * A133238 A331127 A216939
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved