OFFSET
0,2
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..372
FORMULA
From G. C. Greubel, Oct 03 2018: (Start)
a(n) = 29^n * Hermite(n, 26/29).
E.g.f.: exp(52*x - 841*x^2).
a(n) = numerator(Sum_{k=0..floor(n/2)} (-1)^k*n!*(52/29)^(n-2*k)/(k!*(n-2*k)!)). (End)
EXAMPLE
Numerators of 1, 52/29, 1022/841, -121784/24389, -11489780/707281, ...
MATHEMATICA
Numerator[HermiteH[Range[0, 20], 26/29]] (* Harvey P. Dale, Nov 24 2017 *)
Table[29^n*HermiteH[n, 26/29], {n, 0, 30}] (* G. C. Greubel, Oct 03 2018 *)
PROG
(PARI) a(n)=numerator(polhermite(n, 26/29)) \\ Charles R Greathouse IV, Jan 29 2016
(PARI) x='x+O('x^30); Vec(serlaplace(exp(52*x - 841*x^2))) \\ G. C. Greubel, Oct 03 2018
(Magma) [Numerator((&+[(-1)^k*Factorial(n)*(52/29)^(n-2*k)/( Factorial(k) *Factorial(n-2*k)): k in [0..Floor(n/2)]])): n in [0..30]]; // G. C. Greubel, Oct 03 2018
CROSSREFS
KEYWORD
sign,frac
AUTHOR
N. J. A. Sloane, Nov 12 2009
STATUS
approved