The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A028025 Expansion of 1/((1-3x)(1-4x)(1-5x)(1-6x)). 3
 1, 18, 205, 1890, 15421, 116298, 830845, 5709330, 38119741, 249026778, 1599719485, 10142356770, 63639854461, 396031348458, 2448208592125, 15053605980210, 92160458747581, 562225198873338, 3419937140824765 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS This gives the fourth column of the Sheffer triangle A143495 (3-restricted Stirling2 numbers). See the e.g.f. given below, and comments on the general case under A193685. - Wolfdieter Lang, Oct 08 2011 LINKS Harvey P. Dale, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (18,-119,342,-360) FORMULA If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,3), (n >= 3). - Milan Janjic, Apr 26 2009 a(n) = -5^(n+3)/2 + 2*4^(n+2)+ 6^(n+2) - 3^(n+2)/2. - R. J. Mathar, Mar 22 2011 O.g.f.: 1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x)). E.g.f.: (d^3/dx^3)(exp(3*x)*((exp(x)-1)^3)/3!). - Wolfdieter Lang, Oct 08 2011] MATHEMATICA CoefficientList[Series[1/((1-3x)(1-4x)(1-5x)(1-6x)), {x, 0, 30}], x] (* or *) LinearRecurrence[{18, -119, 342, -360}, {1, 18, 205, 1890}, 30] (* Harvey P. Dale, Jan 29 2024 *) PROG (PARI) Vec(1/((1-3*x)*(1-4*x)*(1-5*x)*(1-6*x))+O(x^99)) \\ Charles R Greathouse IV, Sep 26 2012 CROSSREFS Sequence in context: A181400 A282020 A277763 * A109126 A022742 A055528 Adjacent sequences: A028022 A028023 A028024 * A028026 A028027 A028028 KEYWORD nonn,easy AUTHOR N. J. A. Sloane STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 21 19:35 EDT 2024. Contains 372738 sequences. (Running on oeis4.)