OFFSET
0,2
COMMENTS
This gives the fourth column of the Sheffer triangle A143494 (2-restricted Stirling2 numbers). See the e.g.f. given below, and comments on the general case under A193685. - Wolfdieter Lang, Oct 08 2011
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..500
Index entries for linear recurrences with constant coefficients, signature (14,-71,154,-120)
FORMULA
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = (-1)^(n-1)*f(n,3,-5), (n >= 3). - Milan Janjic, Apr 26 2009
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,2), (n >= 3). - Milan Janjic, Apr 26 2009
a(n) = 3^(n+3)/2 - 2*4^(n+2) - 2^(n+2)/3 + 5^(n+3)/6. - R. J. Mathar, Mar 22 2011
O.g.f.: 1/((1-2*x)*(1-3*x)*(1-4*x)*(1-5*x)).
E.g.f.: (d^3/dx^3) (exp(2*x)*((exp(x)-1)^3)/3!). See the Sheffer comment given above. - Wolfdieter Lang, Oct 08 2011
MATHEMATICA
CoefficientList[Series[1/((1 - 2 x) (1 - 3 x) (1 - 4 x) (1 - 5 x)), {x, 0, 25}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 20 2011 *)
LinearRecurrence[{14, -71, 154, -120}, {1, 14, 125, 910}, 30] (* Harvey P. Dale, Feb 05 2020 *)
PROG
(Magma) [3^(n+3)/2 -2*4^(n+2)-2^(n+2)/3+5^(n+3)/6: n in [0..30]]; // Vincenzo Librandi, Jun 21 2011
(PARI) a(n)=n-=2; 3^n*3/2-2*4^n-2^n/3+5^n*5/6 \\ Charles R Greathouse IV, Jun 21 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved