|
|
A016109
|
|
Expansion of 1/((1-7x)(1-8x)(1-9x)(1-10x)).
|
|
0
|
|
|
1, 34, 725, 12410, 186501, 2571114, 33339685, 413066170, 4941549701, 57504755594, 654463491045, 7314256515930, 80522026412101, 875355238834474, 9415203971344805, 100355146006589690
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
LINKS
|
Table of n, a(n) for n=0..15.
Index entries for linear recurrences with constant coefficients, signature (34,-431,2414,-5040).
|
|
FORMULA
|
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,7), n >= 3. - Milan Janjic, Apr 26 2009
a(n) = 19*a(n-1) - 90*a(n-2) + 8^(n+1) - 7^(n+1), n >= 2. - Vincenzo Librandi, Mar 12 2011
a(n) = (10^(n+3) - 3*9^(n+3) + 3*8^(n+3) - 7^(n+3))/6. - Bruno Berselli, Mar 12 2011
a(n) = 34*a(n-1) - 431*a(n-2) + 2414*a(n-3) - 5040*a(n-4); a(0)=1, a(1)=34, a(2)=725, a(3)=12410. - Harvey P. Dale, Jan 26 2012
|
|
MATHEMATICA
|
CoefficientList[Series[1/((1-7x)(1-8x)(1-9x)(1-10x)), {x, 0, 20}], x] (* or *) LinearRecurrence[{34, -431, 2414, -5040}, {1, 34, 725, 12410}, 21] (* Harvey P. Dale, Jan 26 2012 *)
|
|
CROSSREFS
|
Sequence in context: A188711 A296334 A296634 * A028211 A028207 A028193
Adjacent sequences: A016106 A016107 A016108 * A016110 A016111 A016112
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Robert G. Wilson v
|
|
EXTENSIONS
|
Offset changed to 0 by Vincenzo Librandi, Mar 12 2011
Janjic formula adapted by R. J. Mathar, Mar 15 2011
|
|
STATUS
|
approved
|
|
|
|