login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A016094
Expansion of 1/((1-9*x)*(1-10*x)*(1-11*x)*(1-12*x)).
0
1, 42, 1105, 23310, 431221, 7309722, 116419465, 1769717670, 25948716541, 369730963602, 5147200519825, 70298695224030, 944897655707461, 12530341519244682, 164265473257148185, 2132247784185258390
OFFSET
0,2
FORMULA
If we define f(m,j,x) = Sum_{k=j..m} binomial(m,k)*Stirling2(k,j)*x^(m-k) then a(n-3) = f(n,3,9), n >= 3. - Milan Janjic, Apr 26 2009
a(n) = 42*a(n-1) - 659*a(n-2) + 4578*a(n-3) - 11880*a(n-4), n >= 4. - Vincenzo Librandi, Mar 18 2011
a(n) = 23*a(n-1) - 132*a(n-2) + 10^(n+1) - 9^(n+1), n >= 2. - Vincenzo Librandi, Mar 18 2011
a(n) = 5*10^(n+2) + 2*12^(n+2) - 11^(n+3)/2 - 3*9^(n+2)/2. - R. J. Mathar, Mar 19 2011
MATHEMATICA
CoefficientList[Series[1/((1-9x)(1-10x)(1-11x)(1-12x)) , {x, 0, 20}], x] (* or *) LinearRecurrence[{42, -659, 4578, -11880}, {1, 42, 1105, 23310}, 20] (* Harvey P. Dale, Dec 14 2021 *)
CROSSREFS
Sequence in context: A163741 A140404 A075511 * A004361 A264178 A260584
KEYWORD
nonn
STATUS
approved