OFFSET
1,2
LINKS
Robert Israel, Table of n, a(n) for n = 1..1580
FORMULA
G.f.: (x*C(x)^4)/(1 - x/sqrt(1 - 4*x)) where C(x) is the g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016
a(n) ~ (3 - sqrt(5))^4 * (2 + sqrt(5))^(n+2) / (16*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
D-finite with recurrence -2*(n+3)*(26*n-53)*a(n) +(627*n^2-491*n-2440)*a(n-1) +2*(-1234*n^2+3198*n+337)*a(n-2) +(2957*n^2-13637*n+15888)*a(n-3) +2*(211*n-368)*(2*n-5)*a(n-4)=0. - R. J. Mathar, Nov 22 2024
MAPLE
gf := ((-2*x^3+12*x^2-7*x+1)*sqrt(1-4*x)+16*x^3-24*x^2+9*x-1)/(2*(x^2+4*x-1)*x^3):
S:= series(gf, x, 40):
seq(coeff(S, x, j), j=1..30); # Robert Israel, Jan 17 2016
MATHEMATICA
CoefficientList[Series[(1-Sqrt[1-4x])^4/(16*x^4*(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *)
PROG
(PARI) my(x='x+O('x^30)); Vec( sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x)) ) \\ G. C. Greubel, Jul 17 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^4/(16*x^3*(Sqrt(1-4*x) -x)) )); // G. C. Greubel, Jul 17 2019
(Sage) a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^4/(16*x^3*(sqrt(1-4*x) -x))).series(x, 30).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Jul 17 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
STATUS
approved