login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097113
Expansion of (1 + 5*x - 12*x^2 - 80*x^3)/(1 - 33*x^2 + 272*x^4).
0
1, 5, 21, 85, 421, 1445, 8181, 24565, 155461, 417605, 2904981, 7099285, 53578981, 120687845, 977951541, 2051693365, 17698918021, 34878787205, 318061475541, 592939382485, 5681922991141, 10079969502245, 100990737360501
OFFSET
0,2
FORMULA
G.f.: 5*(1+x)/(1-17*x^2) - 4/(1-16*x^2).
a(n) = 33*a(n-2) - 272*a(n-4).
a(n) = (5/2 + 5*sqrt(17)/34)*(sqrt(17))^n + (5/2 - 5*sqrt(17)/34)*(-sqrt(17))^n - 4^(n+1)*(1+(-1)^n)/2.
a(n) = Sum_{k=0..n} binomial(floor(n/2), floor(k/2))4^k.
MATHEMATICA
CoefficientList[Series[(1+5x-12x^2-80x^3)/(1-33x^2+272x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 33, 0, -272}, {1, 5, 21, 85}, 30] (* Harvey P. Dale, Jul 19 2011 *)
CROSSREFS
Sequence in context: A026855 A272832 A273489 * A368345 A265939 A012814
KEYWORD
easy,nonn
AUTHOR
Paul Barry, Jul 25 2004
STATUS
approved