login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion of (1 + 5*x - 12*x^2 - 80*x^3)/(1 - 33*x^2 + 272*x^4).
0

%I #15 Sep 03 2019 02:45:18

%S 1,5,21,85,421,1445,8181,24565,155461,417605,2904981,7099285,53578981,

%T 120687845,977951541,2051693365,17698918021,34878787205,318061475541,

%U 592939382485,5681922991141,10079969502245,100990737360501

%N Expansion of (1 + 5*x - 12*x^2 - 80*x^3)/(1 - 33*x^2 + 272*x^4).

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (0,33,0,-272).

%F G.f.: 5*(1+x)/(1-17*x^2) - 4/(1-16*x^2).

%F a(n) = 33*a(n-2) - 272*a(n-4).

%F a(n) = (5/2 + 5*sqrt(17)/34)*(sqrt(17))^n + (5/2 - 5*sqrt(17)/34)*(-sqrt(17))^n - 4^(n+1)*(1+(-1)^n)/2.

%F a(n) = Sum_{k=0..n} binomial(floor(n/2), floor(k/2))4^k.

%t CoefficientList[Series[(1+5x-12x^2-80x^3)/(1-33x^2+272x^4), {x,0,30}], x] (* or *) LinearRecurrence[{0,33,0,-272},{1,5,21,85},30] (* _Harvey P. Dale_, Jul 19 2011 *)

%K easy,nonn

%O 0,2

%A _Paul Barry_, Jul 25 2004