login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A097115
Expansion of (1 + 11*x - 90*x^2 - 1100*x^3)/(1 - 201*x^2 + 10100*x^4).
0
1, 11, 111, 1111, 12211, 112211, 1333311, 11333311, 144664411, 1144664411, 15611105511, 115611105511, 1676721656611, 11676721656611, 179348887317711, 1179348887317711, 19114237619088811, 119114237619088811, 2030537999527969911, 12030537999527969911, 215084337952324961011
OFFSET
0,2
FORMULA
G.f.: 11*(1+x)/(1-101*x^2) - 10/(1-100*x^2);
a(n) = 201*a(n-2) - 10100*a(n-4);
a(n) = (11/2 + 11*sqrt(101)/202)*sqrt(101)^n + (11/2 - 11*sqrt(101)/202)*(-sqrt(101))^n - 10^(n+1)*(1+(-1)^n)/2;
a(n) = Sum_{k=0..n} binomial(floor(n/2), floor(k/2))*10^k.
MATHEMATICA
LinearRecurrence[ {0, 201, 0, -10100}, {1, 11, 111, 1111}, 18] (* Georg Fischer, Nov 07 2019 *)
PROG
(PARI) Vec((1+11*x-90*x^2-1100*x^3)/(1-201*x^2+10100*x^4) + O(x^25)) \\ Jinyuan Wang, Feb 28 2020
CROSSREFS
Sequence in context: A294348 A078998 A078191 * A346789 A134732 A166747
KEYWORD
nonn,easy
AUTHOR
Paul Barry, Jul 25 2004
EXTENSIONS
More terms from Jinyuan Wang, Feb 28 2020
STATUS
approved