login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026852
a(n) = T(2n,n+3), T given by A026736.
2
1, 8, 45, 221, 1016, 4506, 19572, 83950, 357310, 1513513, 6392134, 26948764, 113500985, 477801129, 2011058681, 8464967333, 35637556603, 150075181365, 632191803847, 2664023530675, 11229995113561, 47355649431833, 199760722776165
OFFSET
3,2
LINKS
FORMULA
G.f.: x^3*C(x)^7/(1 - x/Sqrt(1-4*x)) = x^3*(1-2*x*C(x))*C(x)^9/(1-x*C(x)^3), where C(x) is the g.f. of A000108. - G. C. Greubel, Jul 17 2019
a(n) ~ (2 + sqrt(5))^(n+3) * (3 - sqrt(5))^7 / (128*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019
MATHEMATICA
Drop[CoefficientList[Series[Sqrt[1-4*x]*(1-Sqrt[1-4*x])^9/(64*x^4*(8*x^2 -(1-Sqrt[1-4*x])^3)), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 17 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1 - sqrt(1-4*x))^3 ))) \\ G. C. Greubel, Jul 17 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( Sqrt(1-4*x)*(1-Sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1-Sqrt(1-4*x))^3 )) )); // G. C. Greubel, Jul 17 2019
(Sage) a=(sqrt(1-4*x)*(1-sqrt(1-4*x))^9/(64*x^4*(8*x^2 -(1-sqrt(1-4*x))^3 ))).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 17 2019
CROSSREFS
Sequence in context: A002696 A016208 A216540 * A317405 A110609 A201190
KEYWORD
nonn
STATUS
approved