login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A026857
a(n) = T(2n+1,n+4), T given by A026736.
1
1, 9, 55, 287, 1381, 6343, 28313, 124083, 537242, 2307118, 9852240, 41910428, 177807902, 752981956, 3184773246, 13459063660, 56849094136, 240047748038, 1013452871316, 4278470305930, 18062827159136, 76263743441314, 322033566728056
OFFSET
3,2
LINKS
FORMULA
G.f.: x^3*C(x)^8/(1 - x/sqrt(1-4*x)). - G. C. Greubel, Jul 19 2019
a(n) ~ phi^(3*n-4) / sqrt(5), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jul 19 2019
MATHEMATICA
Drop[CoefficientList[Series[(1-Sqrt[1-4x])^8/(2^8*x^5*(1-x/Sqrt[1-4x])), {x, 0, 40}], x], 3] (* G. C. Greubel, Jul 19 2019 *)
PROG
(PARI) my(x='x+O('x^40)); Vec((1-sqrt(1-4*x))^8/(2^8*x^5*(1-x/sqrt(1-4*x)))) \\ G. C. Greubel, Jul 19 2019
(Magma) R<x>:=PowerSeriesRing(Rationals(), 40); Coefficients(R!( (1-Sqrt(1-4*x))^8/(2^8*x^5*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 19 2019
(Sage) a=((1-sqrt(1-4*x))^8/(2^8*x^5*(1-x/sqrt(1-4*x)))).series(x, 45).coefficients(x, sparse=False); a[3:40] # G. C. Greubel, Jul 19 2019
CROSSREFS
Sequence in context: A005770 A030053 A072844 * A244650 A097790 A356339
KEYWORD
nonn
STATUS
approved