The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A026856 a(n) = T(2n+1,n+3), T given by A026736. 1
 1, 7, 36, 166, 729, 3125, 13229, 55637, 233227, 976271, 4085016, 17096524, 71590557, 299993227, 1258076725, 5280194087, 22178492943, 93226087229, 392144055809, 1650570659359, 6951524807631, 29292822272697, 123496979334851 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 LINKS G. C. Greubel, Table of n, a(n) for n = 2..1000 FORMULA G.f.: (x^2 * C(x)^6)/(1 - x/sqrt(1-4*x)) where C(x) = g.f. for Catalan numbers A000108. - David Callan, Jan 16 2016 a(n) ~ (3 - sqrt(5))^6 * (2 + sqrt(5))^(n+3) / (64*sqrt(5)). - Vaclav Kotesovec, Jul 18 2019 MATHEMATICA CoefficientList[Series[(1-Sqrt[1-4x])^6/(64*x^6*(1-x/Sqrt[1-4x])), {x, 0, 30}], x] (* David Callan, Jan 16 2016 *) PROG (PARI) my(x='x+O('x^30)); Vec( (1-sqrt(1-4*x))^6/(64*x^6*(1-x/sqrt(1-4*x))) ) \\ G. C. Greubel, Jul 21 2019 (MAGMA) R:=PowerSeriesRing(Rationals(), 30); Coefficients(R!( (1-Sqrt(1-4*x))^6/(64*x^6*(1-x/Sqrt(1-4*x))) )); // G. C. Greubel, Jul 21 2019 (Sage) ((1-sqrt(1-4*x))^6/(64*x^6*(1-x/sqrt(1-4*x)))).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jul 21 2019 CROSSREFS Cf. A000108, A026736. Sequence in context: A003516 A095931 A292486 * A038748 A099455 A102053 Adjacent sequences:  A026853 A026854 A026855 * A026857 A026858 A026859 KEYWORD nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 17 17:25 EDT 2021. Contains 343983 sequences. (Running on oeis4.)