login
This site is supported by donations to The OEIS Foundation.

 

Logo

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A023961 First digit after decimal point of square root of n. 14
0, 4, 7, 0, 2, 4, 6, 8, 0, 1, 3, 4, 6, 7, 8, 0, 1, 2, 3, 4, 5, 6, 7, 8, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 0, 1, 2, 3, 4, 4, 5, 6, 7, 7, 8, 9, 0, 0, 1, 2, 2, 3, 4, 4, 5, 6, 6, 7, 8, 8, 9, 0, 0, 1, 1, 2, 3, 3, 4, 4, 5, 6, 6, 7, 7, 8, 8, 9, 0, 0, 1, 1, 2, 2, 3 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

When n is a square, a(n) is equal to 0, but the reciprocal is not true, see A034096. - Michel Marcus, Sep 21 2015

LINKS

Nathaniel Johnston, Table of n, a(n) for n = 1..10000

FORMULA

a(n) = A010879(A000196(100*n)). - Robert Israel, Jul 30 2015

EXAMPLE

sqrt(1) = 1.00... hence a(1) = 0.

sqrt(2) = 1.41... hence a(2) = 4.

sqrt(3) = 1.73... hence a(3) = 7.

MAPLE

A023961 := proc(n) return floor(10*sqrt(n)) mod 10: end: seq(A023961(n), n=1..100); # Nathaniel Johnston, May 04 2011

MATHEMATICA

Array[ Function[ n, RealDigits[ N[ Power[ n, 1/2 ], 10 ], 10 ]// (#[ [ 1, #[ [ 2 ] ]+1 ] ])& ], 110 ]

fd[n_]:=Module[{rd=RealDigits[Sqrt[n], 10, 10]}, First[rd][[Last[rd]+1]]]; Array[fd, 90] (* Harvey P. Dale, Jan 16 2014 *)

PROG

(PARI) a(n) = floor(10*sqrt(n)) % 10; \\ Michel Marcus, Sep 21 2015

CROSSREFS

Cf. A111862, A111850, A111851, A111852, A111853, A111854, A111855, A111856, A111857, A111858, A111859.

Sequence in context: A133982 A069179 A058377 * A147863 A019976 A021072

Adjacent sequences:  A023958 A023959 A023960 * A023962 A023963 A023964

KEYWORD

nonn,easy,base

AUTHOR

N. J. A. Sloane, Olivier Gérard

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified August 18 21:39 EDT 2017. Contains 290768 sequences.