login
A022588
Expansion of Product_{m>=1} (1 + x^m)^23.
2
1, 23, 276, 2323, 15479, 87101, 430445, 1917349, 7839849, 29824583, 106646308, 361327079, 1167406906, 3615602714, 10780913004, 31061653709, 86741652761, 235404301651, 622271232287, 1605432041576, 4049617772390, 10002785010369, 24227747380447, 57613905606273, 134662398395411
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (23/3)^(1/4) * exp(Pi * sqrt(23*n/3)) / (8192 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (23/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 04 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^23, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^23)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^23:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=23 of A286335.
Sequence in context: A162365 A162680 A010975 * A268992 A199031 A125435
KEYWORD
nonn
STATUS
approved