login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022587
Expansion of Product_{m>=1} (1 + x^m)^22.
2
1, 22, 253, 2046, 13134, 71368, 341275, 1473494, 5848810, 21628002, 75261384, 248403586, 782547909, 2365168542, 6887441198, 19393122562, 52959869787, 140631776582, 363943223941, 919706094494, 2273411319069, 5505315501136, 13078268135683, 30514651732686, 70005101272876
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (11/6)^(1/4) * exp(Pi * sqrt(22*n/3)) / (4096 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
a(0) = 1, a(n) = (22/n)*Sum_{k=1..n} A000593(k)*a(n-k) for n > 0. - Seiichi Manyama, Apr 04 2017
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^22, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^22)) \\ G. C. Greubel, Feb 25 2018
(Magma) Coefficients(&*[(1+x^m)^22:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 25 2018
CROSSREFS
Column k=22 of A286335.
Sequence in context: A162679 A325742 A010974 * A143479 A213352 A004412
KEYWORD
nonn
STATUS
approved