login
A022590
Expansion of Product_{m>=1} (1+q^m)^26.
2
1, 26, 351, 3302, 24427, 151658, 822484, 4001660, 17799041, 73391968, 283542740, 1034983222, 3593364255, 11931569028, 38062054017, 117095671862, 348538604492, 1006539781078, 2827014674081, 7738495452714, 20683325376064, 54066855041446, 138427417637249, 347584258977384
OFFSET
0,2
LINKS
FORMULA
a(n) ~ (13/6)^(1/4) * exp(Pi * sqrt(26*n/3)) / (16384 * n^(3/4)). - Vaclav Kotesovec, Mar 05 2015
MATHEMATICA
nmax=50; CoefficientList[Series[Product[(1+q^m)^26, {m, 1, nmax}], {q, 0, nmax}], q] (* Vaclav Kotesovec, Mar 05 2015 *)
PROG
(PARI) m=50; q='q+O('q^m); Vec(prod(n=1, m, (1+q^n)^26)) \\ G. C. Greubel, Feb 19 2018
(Magma) Coefficients(&*[(1+x^m)^26:m in [1..40]])[1..40] where x is PolynomialRing(Integers()).1; // G. C. Greubel, Feb 19 2018
CROSSREFS
Column k=26 of A286335.
Sequence in context: A225979 A162718 A010978 * A364010 A004414 A125461
KEYWORD
nonn
STATUS
approved